При записи формул мощность обозначают буквой работу время

МОУ «Уразовская СОШ №2»

Урок физики

по теме «Мощность»

7 класс

Учитель :Бузунова Н.Н.

Тема урока: Мощность

Цель урока:

  • Познакомиться с мощностью как новой физической величиной;

  • Развивать умения выводить формулы, пользуясь необходимыми знаниями прошлых уроков; развивать логическое мышление, умение анализировать, делать выводы;

  • Создать условия для развития навыков общения и совместной деятельности. Вызвать желание постоянно пополнять свои знания, поддерживать интерес к физике, показывая применение физических явлений на практике

Оборудование: компьютер, проектор.

Тип урока: формирование и совершенствование умений и навыков.

Формы работы: коллективная, индивидуальная, фронтальная,

Средства обучения: объяснительно-иллюстративные, эвристические, исследовательские.

Методы: словесные (фронтальный опрос, проблемная ситуация), наглядные, практические (решение примеров и задач)

Технологии :тестовые, здоровьесберегающие, уровневая дифференциация, ИКТ

Ход урока

  1. Организационный момент.

Цель: проверить готовность к уроку, настроить на рабочий лад, познакомить с планом урока.

II. Актуализация знаний. Проверка выполнения домашнего задания.

Цель: установить правильность, полноту и осознанность выполнения Д/З всеми учащимися; выявить пробелы и определить причины их возникновения.

Сегодня мы продолжим путешествие по «великому» физическому океану истины. Давайте соберемся, улыбнемся друг другу и отправимся в путь.

1.Разгадать кроссворд, определить ключевое слово

-Величина, измеряющаяся в секундах, минутах, часах.

-Физическая величина, измеряемая в джоулях.

— Направленный отрезок прямой, начало которого совпадает с начальным положением точки, а конец – с конечным положением точки

-Способность тела совершать работу.

-Единица измерения энергии.

-Физическая величина, характеризующая действие одного тела на другое, в результате которого другое тело получает ускорение в ИСО.

-Единица пути

-Английский ученый, один из основоположников классической механики.

Мощность – это и есть тема нашего урока. Запишем ее в тетрадь

2.Работа у доски:4 человека по карточкам решают задачи.

Автомобиль проехал расстояние 5 км равномерно. Сила тяги автомобиля — 3 кН. Какую работу совершил автомобиль?(15 МДж)

Вода массой 2 т при падении совершает работу 400 кДж. С какой высоты падает вода?

(20 м)

Трактор тянет плуг с силой 50 кН равномерно по полю, при этом проходит расстояние 30 км. Какую работу совершает трактор? (1500МДж)

Какая масса снега падает с горы при снежной лавине, если лавиной совершается работа 5 МДж, а высота горы 100 м? (5 000 кг)

Остальные

  1. устная работа – заполнить таблицу

    Физическая величина

    Условное обозначение

    Единица измерения

    Формула

    А

    Сила

    м

  2. тестовые задания

1. При записи формул механическую работу обозначают буквой…, силу, действующую на тело буквой…, расстояние пройденное телом буквой….

a) A, F, S; б) A, S, F; в) F, A, S; г) S, F, А.

2. В каком из перечисленных случаев механическая работа равна нулю?

а) конькобежец пробегает установленную дистанцию;

б) подъемный кран опускает груз на землю;

в) стрела, выпущенная из лука, поражает цель;

г) человек держит на плечах тяжелый мешок.

3)В Международной системе исчисления механическая работа выражается в

а) кДж; б) МДж; в) мДж; г) Дж.

Физкультминутка

III.Формирование новых умений и навыков.

Цель: ознакомить учащихся с понятием «Мощность»

«И вечный бой! Покой нам только снится
Сквозь кровь и пыль…
Летит, летит степная кобылица
И мнет ковыль…
И нет конца! Мелькают вёрсты, кручи…
Останови! …Покоя нет! Степная кобылица несется вскачь!»

А.Блок «На поле Куликовом» (июнь 1908 г). ( Слайд 1).

(Слайд 2).

1. Как вы думаете, имеет ли какое-то отношение лошадь к физике?

2. С какой физической величиной связана лошадь?

Действительно, мощность двигателей автомобилей, транспортных средств до сих пор измеряют в лошадиных силах. Сегодня на уроке мы с вами узнаем всё о мощности с точки зрения физики. Давайте подумаем вместе и определим, что мы должны знать о мощности, как о физической величине.

Существует план изучения физических величин: ( Слайд 3).

  1. Определение;

  2. Буквенное обозначение;

  3. Формула;

  4. Единица величины.

Начнем с примера из жизни. Вам необходимо набрать бочку воды для полива растений. Вода находится в колодце. У вас есть выбор: набрать при помощи ведра или при помощи насоса. Напомню, что в обоих случаях механическая работа, совершенная при этом будет одинаковой. Конечно же, большинство из вас выберут, насос.

Вопрос: В чем разница при выполнении одной и той же работы?

Ответ: Насос выполнит эту работу быстрее, т.е. затратит меньшее время.

1) Физическая величина, характеризующая быстроту выполнения работы, называют мощностью.. ( Слайд 4)

2) Скаляр, т.к. не имеет направления.

3) N

Вывод формулы ( Слайд 5,6).

( Слайд 7)

5) [N] = [ 1 Дж/с] = [1Вт ]

Название этой единицы мощности дано в честь английского изобретателя паровой машины (1784г) Джеймса Уатта. Историческая справка( Слайд 5).

6) 1 Вт = мощности, при которой за время 1 с совершается работа в 1 Дж. ( Слайд 8).

Самолеты, автомобили, корабли и другие транспортные средства движутся часто с постоянной скоростью. Например, на трассах автомобиль достаточно долго может двигаться со скоростью 100 км/ч. ( Слайд 9).

Вопрос: от чего зависит скорость движения таких тел?

Оказывается, она напрямую зависит от мощности двигателя автомобиля.

Зная, формулу мощности мы выведем еще одну, но для этого давайте вспомним основную формулу для механической работы.

Учащийся выходит к доске для вывода формулы. ( Слайд 10).

Пусть сила совпадает по направлению со скоростью тела. Запишем формулу работы этой силы.

1.

2.При постоянной скорости движения перемещение точки определяется формулой (в течении этого промежутка времени движение точки практически является равномерным и прямолинейным). Поэтому работа силы, направление которой совпадает или противоположно скорости точки, будет равна

Подставляем в исходную формулу мощности формулу работы , получаем

У нас получилась еще одна формула для расчета мощности, которую мы будем использовать при решении задач.

Эта формула показывает ( Слайд 9), что при постоянной мощности двигателя, изменением скорости можно менять силу тяги автомобиля.

При неизменной мощности двигателя N

Если v , то F ( при увеличении скорости сила, приложенная к движущемуся телу уменьшается)

Если v , то F ( при уменьшении скорости сила, приложенная к движущемуся телу увеличивается)

Вопрос. Когда нужна большая сила тяги?

Ответ: а)При подъеме в гору.

Правильно, тогда водитель снижает скорость.

б) При вспашке земли тракторист движется с малой скоростью, чтобы была большая сила тяги. Для этого водитель, тракторист, машинист, токарь, фрезеровщик часто используют коробку передач, которая позволяет менять скорость. ( Слайд 10).

Мощность всегда указывают в паспорте технического устройства. И в современных технических паспортах автомобилей есть графа:

Мощность двигателя: кВт / л.с.

Следовательно, между этими единицами мощности существует связь.

Вопрос: А появилась эта единица мощности? ( Слайд 11).

Дж. Уатту принадлежит идея измерять механическую мощность в «лошадиных силах». Предложенная им единица мощности была весьма популярна, но в 1948 г. Генеральной конференцией мер и весов была введена новая единица мощности в международной системе единиц – ватт. ( Слайд 12).

1 л.с. = 735,5 Вт.

1 Вт = 0,00013596 л.с.

Эта единица мощности была изъята из обращения с 1 января 1980 г.

Примеры мощностей современных автомобилей. ( Слайд 13,14).

Различные двигатели имеют разные мощности.

таблица 5

Вопрос: А какова мощность человека?

Мощность человека при нормальных условиях работы в среднем составляет 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и большую.

Вопрос: А чем «живые двигатели» отличаются от механических?

( Слайд 15).

Ответ: Тем, что «живые двигатели» могут изменять свою мощность в несколько раз.

Физкультминутка

IV.Формирование практических умений и навыков.

Цель: закреплять знания и умения в выполнении заданий по данной теме

Задача 1 Спортсмен поднял штангу массой 200 кг за 0,5 с на высоту 2м. Какую мощность он при этом развил?( Слайд 16).

Дано:

СИ

Решение:

m = 200 кг

N = A /∆ t

h = 2м

A = F * h спортсмен совершает работу против силы тяжести

∆t = 0,5 с

A=mgh

N = mgh / ∆t

N — ?

N = 200 кг · 10 м/с2 · 2 м : 0,5 с= 8000 Вт =8 кВт

Ответ : N =8 кВт.

Задача 2 Найдите модуль силы тяги автомобиля, движущегося с постоянной скоростью 20м/с, если двигатель автомобиля развивает мощность 40кВт?

Дано:

СИ

Решение:

V=20 м/с

N=v*F

N = 40кВт

40000Вт

F= N / v

F— ?

F = 40000 Вт: 20 м/с= 2000 Вт =2 кВт

Ответ: F= 2кВт

Задача 3. Двигатель мощностью 5кВт работал 10 мин. Какую работу он при этом совершил?

Дано:

СИ

Решение:

∆t = 10мин

600с 

N=А/∆t

N = 5кВт

5000Вт

А= N*∆t

F— ?

А= 5000Вт*600с = 3 000 000 Дж = 3МДж

Ответ: 3 МДж

V. Подведение итогов.

Цель: дать качественную оценку работы класса и отдельных учащихся.

Тестовое задание

При записи формул мощность обозначают буквой …, работу — …,время — …

a) N, A, t; б) A, N, t; в) t, N, А; г) A, t, N.

Для расчета механической мощности используют формулу…

а) б); в) ; г)

Единицей измерения мощности является…

а) Дж; б) Н; в) кг; г) Па; д) Вт.

В Международной системе исчисления мощность выражается в…

а) кВт; б) Вт; в) МВт; г) кВт ч.

Человек развивает наибольшую мощность, когда он…

а) идет по лестнице; в) стоит на лестнице.

б) взбегает по лестнице;

VI.Домашнее задание: параграф 47, выполнить разноуровневые задания задания

Рефлексия.Спасибо всем за работу на уроке. Хочется надеяться, что сегодняшний урок разбудит в вас жажду новых познаний, ведь «великий» океан истины по-прежнему расстилается перед вами, не исследованным до конца! (Слайд)

Тест № 7. Механическая работа и мощность.

Вариант 1.

  1. При записи формулы механическую работу обозначают буквой …., силу, действующую на тело буквой ….., расстояние пройденное телом буквой …..

А) A, F, S;

Б) A, S, F;

В) F, A, S;

Г) S, F, A.

  1. В каком из перечисленных случаев механическая работа равна нулю?

А) конькобежец пробегает установленную дистанцию;

Б) подъёмный кран опускает груз на землю;

В) стрела, выпущенная из лука, поражает цель;

Г) человек держит на плечах тяжёлый мешок.

  1. Мощность – это величина, характеризующая ….

А) время выполнения работы;

Б) количество выполненной работы;

В) быстроту выполнения работы;

Г) качество выполнения работы.

  1. Изменится ли работа, совершаемая двигателем, если мощность двигателя увеличить в 2 раза?

А) увеличится в 2 раза;

Б) уменьшится в 2 раза;

В) увеличится в 4 раза;

Г) уменьшится в 4 раза;

Д) не изменится.

Вариант 2.

  1. В международной системе исчисления механическая работа выражается в ….

А) кДж;

Б) МДж;

В) мДж;

Г) Дж.

  1. В каком из перечисленных случаев совершается механическая работа?

А) кирпич лежит на земле;

Б) шар катится по инерции по гладкой горизонтальной поверхности;

В) трактор тянет прицеп;

Г) мальчик плечом подпирает дверь.

  1. Для расчёта механической мощности используют формулу …

А) N =A/t;

Б) N = A*t;

В) N = t/A;

Г) N = 1/(A*t).

  1. Изменится ли работа, совершаемая двигателем автомобиля, если сила тяги, которую развивает двигатель, остаётся неизменной?

А) увеличится;

Б) уменьшится;

В) остаётся неизменной;

Г) нельзя сказать.

Вариант 3.

  1. Для совершения механической работы необходимы следующие условия …

А) только действия силы;

Б) только движение тела;

В) движения тела под действием силы.

  1. Тело бросили вертикально вверх. При этом механическую работу совершает сила …

А) тяжести;

Б) упругости;

В) трения.

  1. При записи формулы мощность обозначают буквой …, работу буквой …, время буквой…

А) N, A, t;

Б) A, N, t;

В) t, N, A;

Г) A, t, N.

  1. Изменится ли мощность двигателя крана, если совершаемую им работу увеличить в 2 раза?

А) увеличится в 2 раза;

Б) уменьшится в 2 раза;

В) увеличится в 4 раза;

Г) уменьшится в 4 раза;

Д) не изменится.

Вариант 4.

  1. Единицей измерения работы является …

А) Па;

Б) Дж;

В) Н;

Г) кг.

  1. В каком из перечисленных случаев работу совершает сила трения?

А) человек держит в руках сумку;

Б) на столе лежит книга;

В) человек поднимает груз;

Г) автомобиль тормозит у светофора.

  1. Мощность численно равна работе, совершаемой …

А) за 1 час;

Б) машиной;

В) за всё время;

Г) за 1 секунду.

  1. Мощность двигателя грузового автомобиля равна 100 кВт. Это означает, что…..

А) автомобиль перевозит груз массой 10 т на расстояние 10 м;

Б) двигатель автомобиля совершает работу 100 кДж в течение 1 с;

В) максимальная скорость автомобиля 100 км/ч;

Г) грузоподъёмность автомобиля 100 кН.

Вариант 5.

  1. Механическая работа …

А) прямо пропорциональна силе и длине пройденного пути;

Б) прямо пропорциональна силе и обратно пропорциональна длине

пройденного пути;

В) обратно пропорциональна силе и длине пройденного пути;

Г) обратно пропорциональна силе и прямо пропорциональна длине

пройденного пути.

  1. В каком из перечисленных случаев работу совершает сила тяжести?

А) вода давит на стенку сосуда;

Б) колонна поддерживает свод здания;

В) камень, выпущенный из рук падает на землю;

Г) мальчик передвигает стул по горизонтальной поверхности.

  1. В международной системе исчисления мощность выражается в …

А) кВт;

Б) Вт;

В) МВт;

Г) кВт*ч.

  1. Мощность двигателя 60 Вт. Это означает, что двигатель совершает работу равную …

А) 60 Дж за 1 с;

Б) 1 Дж за 60 с;

В) 60 Дж за 7 час;

Г) 60 Дж за 60 с.

Вариант 6.

  1. По какой формуле следует рассчитывать механическую работу?

А) A = F/S;

Б) F = S/F;

В) A = F*S;

Г) A = 1/(S*F).

  1. В каком из перечисленных случаев механическую работу совершает сила упругости?

А) шарик вылетает из пружинного пистолета;

Б) на парашюте опускают груз;

В) брусок всплывает со дна водоёма;

Г) человек сидит на стуле.

  1. Единицей измерения мощности является …

А) Дж;

Б) Н;

В) кг;

Г) Па;

Д) Вт.

  1. Человек развивает наибольшую мощность, когда он ….

А) идёт по лестнице;

Б) взбегает по лестнице;

В) стоит на лестнице.

Определение мощности

Допустим, нам необходимо убрать урожай пшеницы с поля площадью 100 га. Это можно сделать вручную или с помощью комбайна. Очевидно, что пока человек обработает 1 га площади, комбайн успеет сделать намного больше. В данном случае разница между человеком и техникой — именно то, что называют мощностью. Отсюда вытекает первое определение.

Мощность в физике — это количество работы, которая совершается за единицу времени.

Рассмотрим другой пример: между точкой А и точкой Б расстояние 15 км, которое человек проходит за 3 часа, а автомобиль может проехать всего за 10 минут. Понятно, что одно и то же количество работы они сделают за разное время. Что показывает мощность в данном случае? Как быстро или с какой скоростью выполняется некая работа.

В электромеханике эта величина имеет еще одно определение.

Мощность — это скалярная физическая величина, которая характеризует мгновенную скорость передачи энергии от системы к системе или скорость преобразования, изменения, потребления энергии.

Напомним, что скалярными величинами называются те, значение которых выражается только числом (без вектора направления).

Мощность человека в зависимости от деятельности

Вид деятельности

Мощность, Вт

Неспешная ходьба

60–65

Бег со скоростью 9 км/ч

750

Плавание со скоростью 50 м/мин

850

Игра в футбол

930

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Пятерка по физике у тебя в кармане!

Решай домашку по физике на изи. Подробные решения помогут разобраться в сложной теме и получить пятерку!

Пятерка по физике у тебя в кармане!

Как обозначается мощность: единицы измерения

В таблице выше вы увидели обозначение в ваттах, и читая инструкции к бытовой технике, можно заметить, что среди характеристик прибора обязательно указано количество ватт. Это единица измерения механической мощности, используемая в международной системе СИ. Она обозначается буквой W или Вт.

Измерение мощности в ваттах было принято в честь шотландского ученого Джеймса Уатта — изобретателя паровой машины. Он стал одним из родоначальников английской промышленной революции.

В физике принято следующее обозначение мощности: 1 Вт = 1 Дж / 1с.

Это значит, что за 1 ватт принята мощность, необходимая для совершения работы в 1 джоуль за 1 секунду.

В каких единицах еще измеряется мощность? Ученые-астрофизики измеряют ее в эргах в секунду (эрг/сек), а в автомобилестроении до сих пор можно услышать о лошадиных силах.

Интересно, что автором этой последней единицы измерения стал все тот же шотландец Джеймс Уатт. На одной из пивоварен, где он проводил свои исследования, хозяин накачивал воду для производства с помощью лошадей. И Уатт выяснил, что 1 лошадь за секунду поднимает около 75 кг воды на высоту 1 метр. Вот так и появилось измерение в лошадиных силах. Правда, сегодня такое обозначение мощности в физике считается устаревшим.

Одна лошадиная сила — это мощность, необходимая для поднятия груза в 75 кг за 1 секунду на 1 метр. 🐴

Единицы измерения

Вт

1 ватт

1

1 киловатт

103

1 мегаватт

106

1 эрг в секунду

10-7

1 метрическая лошадиная сила

735,5

Подготовка к ОГЭ по физике онлайн поможет снять стресс перед экзаменом и получить высокий балл.

Все формулы мощности

Зная определения, несложно понять формулы мощности, используемые в разных разделах физики — в механике и электротехнике.

В механике

Механическая мощность (N) равна отношению работы ко времени, за которое она была выполнена.

Основная формула:

N = A / t, где A — работа, t — время ее выполнения.

Если вспомнить, что работой называется произведение модуля силы, модуля перемещения и косинуса угла между ними, мы получим формулу измерения работы.

Формула измерения механической работы

Если направления модуля приложения силы и модуля перемещения объекта совпадают, угол будет равен 0 градусов, а его косинус равен 1. В таком случае формулу можно упростить:

A = F × S

Используем эту формулу для вычисления мощности:

N = A / t = F × S / t = F × V

В последнем выражении мы исходим из того, что скорость (V) равна отношению перемещения объекта на время, за которое это перемещение произошло.

Формула мощности

В электротехнике

В общем случае электрическая мощность (P) говорит о скорости передачи энергии. Она равна произведению напряжения на участке цепи на величину тока, проходящего по этому участку.

P = I × U, где I — сила тока, U — напряжение.

В электротехнике существует несколько видов мощности: активная, реактивная, полная, пиковая и т. д. Но это тема отдельного материала, сейчас же мы потренируемся решать задачи на основе общего понимания этой величины. Посмотрим, как найти мощность, используя вышеуказанные формулы по физике.

Задача 1

Допустим, человек поднимает ведро воды из колодца, прикладывая силу 60 Н. Глубина колодца составляет 10 м, а время, необходимое для поднятия — 30 сек. Какова будет мощность человека в этом случае?

Решение:

Найдем вначале величину работы, используя тот факт, что мы знаем расстояние перемещения (глубину колодца 10 м) и приложенную силу 60 Н.

A = F × S = 60 Н × 10 м = 600 Дж

Когда известно значение работы и времени, найти мощность несложно:

N = A / t = 600 Дж / 30 сек = 20 Вт

Ответ: мощность человека при поднятии ведра — 20 ватт.

Задача 2

В комнате включена лампа мощностью 100 Вт. Напряжение домашней электросети — 220 В. Какая сила тока проходит через эту лампу?

Решение:

Мы знаем, что Р = 100 Вт, а U = 220 В.

Поскольку P = I × U, следовательно I = P / U.

I = 100 / 220 = 0,45 А.

Ответ: через лампу пройдет сила тока 0,45 А.

Вопросы для самопроверки

  1. Что характеризует механическая мощность?

  2. Какие существуют единицы измерения мощности в физике?

  3. Какая из единиц измерения считается устаревшей?

  4. Мощность можно назвать скалярной величиной? Что это означает?

  5. Как из формулы нахождения мощности получить работу?

  6. Какой буквой обозначается мощность в механике, а какой — в электротехнике?

  7. Какую работу производит за 30 минут устройство мощностью 600 Вт?

  8. Как узнать напряжение в сети, если мы знаем мощность подключенного к ней прибора и силу тока, проходящую через прибор?

  9. Если в течение 1 часа автомобиль №1 едет со скоростью 60 км/ч, а автомобиль №2 — со скоростью 90 км/ч, одинаковую ли мощность они развивают в это время?

  10. Допустим, автобус отвез пассажиров из города А в город В за 1 час. Если он планирует вернуться в город А пустым по той же трассе и потратить на это 1 час, ему понадобится развить такую же мощность или меньшую?

Механическая работа. Единицы работы.

В обыденной жизни под понятием «работа» мы понимаем всё.

В физике понятие работа несколько иное. Это определенная физическая величина, а значит, ее можно измерить. В физике изучается прежде всего механическая работа.

Рассмотрим примеры механической работы.

Поезд движется под действием силы тяги электровоза, при этом совершается механическая работа. При выстреле из ружья сила давления пороховых газов совершает работу — перемещает пулю вдоль ствола, скорость пули при этом увеличивается.

Из этих примеров видно, что механическая работа совершается, когда тело движется под действием силы. Механическая работа совершается и в том случае, когда сила, действуя на тело (например, сила трения), уменьшает скорость его движения.

Желая передвинуть шкаф, мы с силой на него надавливаем, но если он при этом в движение не приходит, то механической работы мы не совершаем. Можно представить себе случай, когда тело движется без участия сил (по инерции), в этом случае механическая работа также не совершается.

Итак, механическая работа совершается, только когда на тело действует сила, и оно движется.

Нетрудно понять, что чем большая сила действует на тело и чем длиннее путь, который проходит тело под действием этой силы, тем большая совершается работа.

Механическая работа прямо пропорциональна приложенной силе и прямо пропорциональна пройденному пути.

Поэтому, условились измерять механическую работу произведением силы на путь, пройденный по этому направлению этой силы:

работа = сила × путь

или

A = Fs,

где А — работа, F — сила и s — пройденный путь.

За единицу работы принимается работа, совершаемая силой в 1Н, на пути, равном 1 м.

Единица работы — джоуль (Дж) названа в честь английского ученого Джоуля. Таким образом,

1 Дж = 1Н · м.

Используется также килоджоули (кДж) .

1 кДж = 1000 Дж.

Формула А = Fs применима в том случае, когда сила F постоянна и совпадает с направлением движения тела.

Если направление силы совпадает с направлением движения тела, то данная сила совершает положительную работу.

Если же движение тела происходит в направлении, противоположном направлению приложенной силы, например, силы трения скольжения, то данная сила совершает отрицательную работу.

A = -Fs.

Если направление силы, действующей на тело, перпендикулярно направлению движения, то эта сила работы не совершает, работа равна нулю:

A = 0.

В дальнейшем, говоря о механической работе, мы будем кратко называть ее одним словом — работа.

Пример. Вычислите работу, совершаемую при подъеме гранитной плиты объемом 0,5 м3 на высоту 20 м. Плотность гранита 2500 кг/м3.

Запишем условие задачи, и решим ее.

Дано:

V = 0,5 м3

ρ = 2500 кг/м3

h = 20 м

Решение:

A = Fs,

где F -сила, которую нужно приложить, чтобы равномерно поднимать плиту вверх. Эта сила по модулю равна силе тяж Fтяж, действующей на плиту, т. е. F = Fтяж. А силу тяжести можно определить по массе плиты: Fтяж = gm. Массу плиты вычислим, зная ее объем и плотность гранита: m = ρV; s = h, т. е. путь равен высоте подъема.

Итак, m = 2500 кг/м3 · 0,5 м3 = 1250 кг.

F = 9,8 Н/кг · 1250 кг ≈ 12 250 Н.

A = 12 250 Н · 20 м = 245 000 Дж = 245 кДж.

А — ?

Ответ: А =245 кДж.

Рычаги.Мощность.Энергия

На совершение одной и той же работы различным двигателям требуется разное время. Например, подъемный кран на стройке за несколько минут поднимает на верхний этаж здания сотни кирпичей. Если бы эти кирпичи перетаскивал рабочий, то ему для этого потребовалось бы несколько часов. Другой пример. Гектар земли лошадь может вспахать за 10-12 ч, трактор же с многолемешным плугом (лемех — часть плуга, подрезающая пласт земли снизу и передающая его на отвал; многолемешный — много лемехов), эту работу выполнит на 40-50 мин.

Ясно, что подъемный кран ту же работу совершает быстрее, чем рабочий, а трактор — быстрее чем лошадь. Быстроту выполнения работы характеризуют особой величиной, называемой мощностью.

Мощность равна отношению работы ко времени, за которое она была совершена.

Чтобы вычислить мощность, надо работу разделить на время, в течение которого совершена эта работа.
мощность = работа/время.

или

N = A/t,

где N — мощность, A — работа, t — время выполненной работы.

Мощность — величина постоянная, когда за каждую секунду совершается одинаковая работа, в других случаях отношение A/t определяет среднюю мощность:

Nср = A/t .
За единицу мощности приняли такую мощность, при которой в 1 с совершается работа в Дж.

Эта единица называется ваттом (Вт) в честь еще одного английского ученого Уатта.

Итак,

1 ватт = 1 джоуль/ 1 секунда, или 1 Вт = 1 Дж/с .

Ватт (джоуль в секунду) — Вт ( 1 Дж/с).

В технике широко используется более крупные единицы мощности — киловатт (кВт), мегаватт (МВт) .

1 МВт = 1 000 000 Вт

1 кВт = 1000 Вт

1 мВт = 0,001 Вт

1 Вт = 0,000001 МВт

1 Вт = 0,001 кВт

1 Вт = 1000 мВт

Пример. Найти мощность потока воды, протекающей через плотину, если высота падения воды 25 м, а расход ее — 120 м3 в минуту.

Запишем условие задачи и решим ее.

Дано:

h = 25 м

V = 120 м3

ρ = 1000 кг/м3

t = 60 c

g = 9,8 м/с2

Решение:

Масса падающей воды: m = ρV,

m = 1000 кг/м3 · 120 м3 = 120 000 кг (12 · 104 кг).

Сила тяжести, действующая на воду:

F = gm,

F = 9.8 м/с2 · 120 000 кг ≈ 1 200 000 Н (12 · 105 Н)

Работа, совершаемая потоком в минуту:

A = Fh,

А — 1 200 000 Н · 25 м = 30 000 000 Дж (3 · 107 Дж).

Мощность потока: N = A/t,

N = 30 000 000 Дж / 60 с = 500 000 Вт = 0,5 МВт.

N — ?

Ответ: N = 0.5 МВт.

Различные двигатели имеют мощности от сотых и десятых долей киловатта (двигатель электрической бритвы, швейной машины) до сотен тысяч киловатт (водяные и паровые турбины).

Таблица 5.

Мощность некоторых двигателей, кВт.

Вид транспортного средства Мощность двигателя Вид транспортного средства Мощность двигателя
Автомобиль «Волга — 3102» 70 Ракета-носитель космического корабля
Самолет Ан-2 740
Дизель тепловоза ТЭ10Л 2200 «Восток» 15 000 000
Вертолет Ми — 8 2×1100 «Энергия» 125 000 000

На каждом двигателе имеется табличка (паспорт двигателя), на которой указаны некоторые данные о двигателе, в том числе и его мощность.

Мощность человека при нормальный условиях работы в среднем равна 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и еще бóльшую.

Зная мощность двигателя, можно рассчитать работу, совершаемую этим двигателем в течение какого-нибудь промежутка времени.

Из формулы N = A/t следует, что

A = Nt.

Чтобы вычислить работу, необходимо мощность умножить на время, в течение которого совершалась эта работа.

Пример. Двигатель комнатного вентилятора имеет мощность 35 Вт. Какую работу он совершает за 10 мин?

Запишем условие задачи и решим ее.

Дано:

N = 35 Вт

t = 10 мин

A = ?

Си 600 с.

Решение:

A = Nt,

A = 35 Вт * 600с = 21 000 Вт* с = 21 000 Дж = 21 кДж.

Ответ A = 21 кДж.

Простые механизмы.

С незапамятных времен человек использует для совершения механической работы различные приспособления.

Каждому известно, что тяжелый предмет (камень, шкаф, станок), который невозможно сдвинуть руками, можно сдвинуть с помощью достаточно длинной палки — рычага.

На данный момент считается, что с помощью рычагов три тысячи лет назад при строительстве пирамид в Древнем Египте передвигали и поднимали на большую высоту тяжелые каменные плиты.

Во многих случаях, вместо того, чтобы поднимать тяжелый груз на некоторую высоту, его можно вкатывать или втаскивать на ту же высоту по наклонной плоскости или поднимать с помощью блоков.

Приспособления, служащие для преобразования силы, называются механизмами.

К простым механизмам относятся: рычаги и его разновидности — блок, ворот; наклонная плоскость и ее разновидности — клин, винт. В большинстве случаев простые механизмы применяют для того, чтобы получить выигрыш в силе, т. е. увеличить силу, действующую на тело, в несколько раз.

Простые механизмы имеются и в бытовых, и во всех сложных заводских и фабричных машинах, которые режут, скручивают и штампуют большие листы стали или вытягивают тончайшие нити, из которых делаются потом ткани. Эти же механизмы можно обнаружить и в современных сложных автоматах, печатных и счетных машинах.

Рычаг. Равновесие сил на рычаге.

Рассмотрим самый простой и распространенный механизм — рычаг.

Рычаг представляет собой твердое тело, которое может вращаться вокруг неподвижной опоры.

На рисунках показано, как рабочий для поднятия груза в качестве рычага, использует лом. В первом случае рабочий с силой F нажимает на конец лома B, во втором — приподнимает конец B.

Рабочему нужно преодолеть вес груза P — силу, направленную вертикально вниз. Он поворачивает для этого лом вокруг оси, проходящей через единственную неподвижную точку лома — точку его опоры О. Сила F, с которой рабочий действует на рычаг, меньше силы P, таким образом, рабочий получает выигрыш в силе. При помощи рычага можно поднять такой тяжелый груз, который своими силами поднять нельзя.

На рисунке изображен рычаг, ось вращения которого О (точка опоры) расположена между точками приложения сил А и В. На другом рисунке показана схема этого рычага. Обе силы F1 и F2, действующие на рычаг, направлены в одну сторону.

Кратчайшее расстояние между точкой опоры и прямой, вдоль которой действует на рычаг сила, называется плечом силы.

Чтобы найти плечо силы, надо из точки опоры опустить перпендикуляр на линию действия силы.

Длина этого перпендикуляра и будет плечом данной силы. На рисунке показано, что ОА — плечо силы F1; ОВ — плечо силы F2 . Силы, действующие на рычаг могут повернуть его вокруг оси в двух направлениях: по ходу или против хода часовой стрелки. Так, сила F1 вращает рычаг по ходу часовой стрелки, а сила F2 вращает его против часовой стрелки.

Условие, при котором рычаг находится в равновесии под действием приложенных к нему сил, можно установить на опыте. При этом надо помнить, что результат действия силы, зависит не только от ее числового значения (модуля), но и от того, в какой точке она приложена к телу, или как направлена.

К рычагу (см рис.) по обе стороны от точки опоры подвешиваются различные грузы так, что каждый раз рычаг оставался в равновесии. Действующие на рычаг силы, равны весам этих грузов. Для каждого случая измеряются модули сил и их плечи. Из опыта изображенного на рисунке 154, видно, что сила 2 Н уравновешивает силу 4 Н. При этом, как видно из рисунка, плечо меньшей силы в 2 раза больше плеча большей силой.

На основании таких опытов было установлено условие (правило) равновесия рычага.

Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.

Это правило можно записать в виде формулы:

F1/F2 = l2/l1,

где F1 и F2— силы, действующие на рычаг, l1 и l2, — плечи этих сил (см. рис.).

Правило равновесия рычага было установлено Архимедом около 287 — 212 гг. до н. э. (но ведь в прошлом параграфе говорилось, что рычаги использовались египтянами? Или тут важную роль играет слово «установлено»?)

Из этого правила следует, что меньшей силой можно уравновесить при помощи рычага бóльшую силу. Пусть одно плечо рычага в 3 раза больше другого (см рис.). Тогда, прикладывая в точке В силу, например, в 400 Н, можно поднять камень весом 1200 Н. Что0бы поднять еще более тяжелый груз, нужно увеличить длину плеча рычага, на которое действует рабочий.

Пример. С помощью рычага рабочий поднимает плиту массой 240 кг (см рис. 149). Какую силу прикладывает он к большему плечу рычага, равному 2,4 м, если меньшее плечо равно 0,6 м?

Запишем условие задачи, и решим ее.

Дано:

m = 240 кг

g =9,8 Н/кг

l1 = 2,4 м

l2 =0,6 м

Решение:

По правилу равновесия рычага F1/F2 = l2/l1, откуда F1 = F2 l2/l1, где F2 = Р — вес камня. Вес камня asd = gm, F = 9,8 Н · 240 кг ≈ 2400 Н

Тогда, F1 = 2400 Н · 0,6/2,4 = 600 Н.

F — ?

Ответ : F1 = 600 Н.

В нашем примере рабочий преодолевает силу 2400 Н, прикладывая к рычагу силу 600 Н. Но при этом плечо, на которое действует рабочий, в 4 раза длиннее того, на которое действует вес камня (l1 : l2 = 2,4 м : 0,6 м = 4).

Применяя правило рычага, можно меньшей силой уравновесить бóльшую силу. При этом плечо меньшей силы должно быть длиннее плеча большей силы.

Момент силы.

Вам уже известно правило равновесия рычага:

F1 / F2 = l2 / l1,

Пользуясь свойством пропорции (произведение ее крайних членов, равно произведению ее средних членов), запишем его в таком виде:

F1l1 = F2l2 .

В левой части равенства стоит произведение силы F1 на ее плечо l1, а в правой — произведение силы F2 на ее плечо l2 .

Произведение модуля силы, вращающей тело, на ее плечо называется моментом силы; он обозначается буквой М. Значит,

M = Fl.

Рычаг находится в равновесии под действием двух сил, если момент силы, вращающий его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки.

Это правило, называемое правилом моментов, можно записать в виде формулы:

М1 = М2

Действительно, в рассмотренном нами опыте, (§ 56) действующие силы были равны 2 Н и 4 Н, их плечи соответственно составляли 4 и 2 давления рычага, т. е. моменты этих сил одинаковы при равновесии рычага.

Момент силы, как и всякая физическая величина, может быть измерена. За единицу момента силы принимается момент силы в 1 Н, плечо которой ровно 1 м.

Эта единица называется ньютон-метр (Н · м).

Момент силы характеризует действие силы, и показывает, что оно зависит одновременно и от модуля силы, и от ее плеча. Действительно, мы уже знаем, например, что действие силы на дверь зависит и от модуля силы, и от того, где приложена сила. Дверь тем легче повернуть, чем дальше от оси вращения приложена действующая на нее сила. Гайку, лучше отвернуть длинным гаечным ключом, чем коротким. Ведро тем легче поднять из колодца, чем длиннее ручка вóрота, и т. д.

Рычаги в технике, быту и природе.

Правило рычага (или правило моментов) лежит в основе действия различного рода инструментов и устройств, применяемых в технике и быту там, где требуется выигрыш в силе или в пути.

Выигрыш в силе мы имеем при работе с ножницами. Ножницыэто рычаг (рис), ось вращения которого, происходит через винт, соединяющий обе половины ножниц. Действующей силой F1 является мускульная сила руки человека, сжимающего ножницы. Противодействующей силой F2 — сила сопротивления такого материала, который режут ножницами. В зависимости от назначения ножниц их устройство бывает различным. Конторские ножницы, предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки. Для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии. Ножницы для резки листового металла (рис.) имеют ручки гораздо длиннее лезвий, так как сила сопротивления металла велика и для ее уравновешивания плечо действующей силы приходится значительно увеличивать. Еще больше разница между длиной ручек и расстоянии режущей части и оси вращения в кусачках (рис.), предназначенных для перекусывания проволоки.

Рычаги различного вида имеются у многих машин. Ручка швейной машины, педали или ручной тормоз велосипеда, педали автомобиля и трактора, клавиши пианино — все это примеры рычагов, используемых в данных машинах и инструментах.

Примеры применения рычагов — это рукоятки тисков и верстаков, рычаг сверлильного станка и т. д.

На принципе рычага основано действие и рычажных весов (рис.). Учебные весы, изображенные на рисунке 48 (с. 42), действуют как равноплечий рычаг. В десятичных весах плечо, к которому подвешена чашка с гирями, в 10 раз длиннее плеча, несущего груз. Это значительно упрощает взвешивание больших грузов. Взвешивая груз на десятичных весах, следует умножить массу гирь на 10.

Устройство весов для взвешивания грузовых вагонов автомобилей также основано на правиле рычага.

Рычаги встречаются также в разных частях тела животных и человека. Это, например, руки, ноги, челюсти. Много рычагов можно найти в теле насекомых (прочитав книгу про насекомых и строение их тела), птиц, в строении растений.

Применение закона равновесия рычага к блоку.

Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускается веревка, трос или цепь.

Неподвижным блоком называется такой блок, ось которого закреплена, и при подъеме грузов не поднимается и не опускается (рис).

Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи сил равны радиусу колеса (рис): ОА = ОВ = r. Такой блок не дает выигрыша в силе. (F1 = F2), но позволяет менять направление действие силы.
Подвижный блок — это блок. ось которого поднимается и опускается вместе с грузом (рис.). На рисунке показан соответствующий ему рычаг: О — точка опоры рычага, ОА — плечо силы Р и ОВ — плечо силы F. Так как плечо ОВ в 2 раза больше плеча ОА, то сила F в 2 раза меньше силы Р:

F = P/2 .

Таким образом, подвижный блок дает выигрыш в силе в 2 раза.

Это можно доказать и пользуясь понятием момента силы. При равновесии блока моменты сил F и Р равны друг другу. Но плечо силы F в 2 раза больше плеча силы Р, а, значит, сама сила F в 2 раза меньше силы Р.

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис.). Неподвижный блок применяется только для удобства. Он не дает выигрыша в силе, но изменяет направление действия силы. Например, позволяет поднимать груз, стоя на земле. Это пригождается многим людям или рабочим. Тем не менее, он даёт выигрыш в силе в 2 раза больше обычного!

Равенство работ при использовании простых механизмов. «Золотое правило» механики.

Рассмотренные нами простые механизмы применяются при совершении работы в тех случаях, когда надо действием одной силы уравновесить другую силу.

Естественно, возникает вопрос: давая выигрыш в силе или пути, не дают ли простые механизмы выигрыша в работе? Ответ на поставленный вопрос можно получить из опыта.

Уравновесив на рычаге две какие-нибудь разные по модулю силы F1 и F2 (рис.), приводим рычаг в движение. При этом оказывается, что за одно и то же время точка приложения меньшей силы F2 проходит больший путь s2 , а точка приложения большей силы F1 — меньший путь s1. Измерив эти пути и модули сил, находим, что пути, пройденные точками приложения сил на рычаге, обратно пропорциональны силам:

s1 / s2 = F2 / F1.

Таким образом, действуя на длинное плечо рычага, мы выигрываем в силе, но при этом во столько же раз проигрываем в пути.

Произведение силы F на путь s есть работа. Наши опыты показывают, что работы, совершаемые силами, приложенными к рычагу, равны друг другу:

F1 s1 = F2 s2, т. е. А1 = А2.

Итак, при использовании рычага выигрыша в работе не получится.

Пользуясь рычагом, мы можем выиграть или в силе, или в расстоянии. Действуя же силой на короткое плечо рычага, мы выигрываем в расстоянии, но во столько же раз проигрываем в силе.

Существует легенда, что Архимед, восхищенный открытием правила рычага, воскликнул: «Дайте мне точку опоры, и я переверну Землю!».

Конечно, Архимед не мог бы справиться с такой задачей, если бы даже ему и дали бы точку опоры (которая должна была бы быть вне Земли) и рычаг нужной длины.

Для подъема земли всего на 1 см длинное плечо рычага должно было бы описать дугу огромной длины. Для перемещения длинного конца рычага по этому пути, например, со скоростью 1 м/с, потребовались бы миллионы лет!

Не дает выигрыша в работе и неподвижный блок, в чем легко убедиться на опыте (см. рис.). Пути, проходимые точками приложения сил F и F, одинаковы, одинаковы и силы, а значит, одинаковы и работы.

Можно измерить и сравнить между собой работы, совершаемые с помощью подвижного блока. Чтобы при помощи подвижного блока поднять груз на высоту h, необходимо конец веревки, к которому прикреплен динамометр, как показывает опыт (рис.), переместить на высоту 2h.

Таким образом, получая выигрыш в силе в 2 раза, проигрывают в 2 раза в пути, следовательно, и подвижный блок, на дает выигрыша в работе.

Многовековая практика показала, что ни один из механизмов не дает выигрыш в работе. Применяют же различные механизмы для того, чтобы в зависимости от условий работы выиграть в силе или в пути.

Уже древним ученым было известно правило, применимое ко всем механизмом: во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии. Это правило назвали «золотым правилом» механики.

Коэффициент полезного действия механизма.

Рассматривая устройство и действие рычага, мы не учитывали трение, а также вес рычага. в этих идеальных условиях работа, совершенная приложенной силой (эту работу мы будем называть полной), равна полезной работе по подъему грузов или преодоления какого — либо сопротивления.

На практике совершенная с помощью механизма полная работа всегда несколько больше полезной работы.

Часть работы совершается против силы трения в механизме и по перемещению его отдельных частей. Так, применяя подвижный блок, приходится дополнительно совершать работу по подъему самого блока, веревки и по определению силы трения в оси блока.

Какой мы механизм мы не взяли, полезная работа, совершенная с его помощью, всегда составляет лишь часть полной работы. Значит, обозначив полезную работу буквой Ап, полную(затраченную) работу буквой Аз, можно записать:

Ап < Аз или Ап / Аз < 1.

Отношение полезной работы к полной работе называется коэффициентом полезного действия механизма.

Сокращенно коэффициент полезного действия обозначается КПД.

КПД = Ап / Аз.

КПД обычно выражается в процентах и обозначается греческой буквой η, читается он как «эта»:

η = Ап / Аз · 100%.

Пример: На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложена сила 250 Н. Груз подняли на высоту h1 = 0,08 м, при этом точка приложения движущей силы опустилась на высоту h2 = 0,4 м. Найти КПД рычага.

Запишем условие задачи и решим ее.

Дано:

m = 240

g = 9,8 Н/кг

F = 250 Н

h1 = 0.08 м

h2 =0,04 м

Решение:

η = Ап / Аз · 100%.

Полная (затраченная) работа Аз = Fh2.

Полезная работа Ап = Рh1

Р = gm.

Р = 9,8 · 100 кг ≈ 1000 Н.

Ап = 1000 Н · 0,08 = 80 Дж.

Аз = 250 Н · 0,4 м = 100 Дж.

η = 80 Дж/100 Дж · 100% = 80%.

η — ?

Ответ : η = 80%.

Но «золотое правило» выполняется и в этом случае. Часть полезной работы — 20% ее-расходуется на преодоление трения в оси рычага и сопротивления воздуха, а также на движение самого рычага.

КПД любого механизма всегда меньше 100%. Конструируя механизмы, люди стремятся увеличить их КПД. Для этого уменьшаются трение в осях механизмов и их вес.

Энергия.

На заводах и фабриках, станки и машины приводятся в движения с помощью электродвигателей, которые расходуют при этом электрическую энергию (отсюда и название).

Автомобили и самолеты тепловозы и теплоходы, работают, расходуя энергию сгорающего топлива, гидротурбины — энергию падающей с высоты воды. Да и сами мы, чтобы жить, учиться и работать, возобновляем свой запас энергии при помощи пищи, которую мы едим.

Слово «энергия» употребляется нередко и в быту. Так, например, людей, которые могут быстро выполнять большую работу, мы называем энергичными, обладающими большой энергией. Что же такое энергия? Чтобы ответить на этот вопрос, рассмотрим примеры.

Сжатая пружина (рис), распрямляясь, совершить работу, поднять на высоту груз, или заставить двигаться тележку.

Поднятый над землей неподвижный груз не совершает работы, но если этот груз упадет, он может совершить работу (например, может забить в землю сваю).

Способностью совершить работу обладает и всякое движущееся тело. Так, скатившийся с наклонной плоскости стальной шарик А (рис), ударившись о деревянный брусок В, передвигает его на некоторое расстояние. При этом совершается работа.

Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, говорится, что они обладают энергией.

Энергия — физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергия выражается в системе СИ в тех же единицах, что и работу, т. е. в джоулях.

Чем большую работу может совершить тело, тем большей энергией оно обладает.

При совершении работы энергия тел изменяется. Совершенная работа равна изменению энергии.

Потенциальная и кинетическая энергия.

Потенциальной (от лат. потенция — возможность) энергией называется энергия, которая определяется взаимным положением взаимодействующих тел и частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое относительно поверхности Земли, потому что энергия зависит от взаимного положения его и Земли. и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле, равной нулю, то потенциальная энергия тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Обозначим потенциальную энергию тела Еп, поскольку Е = А , а работа, как мы знаем, равна произведению силы на путь, то

А = Fh,

где F — сила тяжести.

Значит, и потенциальная энергия Еп равна:

Е = Fh, или Е = gmh,

где g — ускорение свободного падения, m — масса тела, h — высота, на которую поднято тело.

Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию молота копра (рис.) используют в строительстве для совершению работы по забиванию свай.

Открывая дверь с пружиной, совершается работа по растяжению (или сжатию) пружины. За счет приобретенной энергии пружина, сокращаясь (или распрямляясь), совершает работу, закрывая дверь.

Энергию сжатых и раскрученных пружин используют, например, в ручных часах, разнообразных заводных игрушках и пр.

Потенциальной энергией обладает всякое упругое деформированное тело. Потенциальную энергию сжатого газа используют в работе тепловых двигателей, в отбойных молотках, которые широко применяют в горной промышленности, при строительстве дорог, выемке твердого грунта и т. д.

Энергия, которой обладает тело вследствие своего движения, называется кинетической (от греч. кинема — движение) энергией.

Кинетическая энергия тела обозначается буквой Ек .

Движущаяся вода, приводя во вращение турбины гидроэлектростанций, расходует свою кинетическую энергию и совершает работу. Кинетической энергией обладает и движущийся воздух — ветер.

От чего зависит кинетическая энергия? Обратимся к опыту (см. рис.). Если скатывать шарик А с разных высот, то можно заметить, что чем с большей высоты скатывается шарик, тем больше его скорость и тем дальше он продвигает брусок, т. е. совершает большую работу. Значит, кинетическая энергия тела зависит от его скорости.

За счет скорости большой кинетической энергией обладает летящая пуля.

Кинетическая энергия тела зависит и от его массы. Еще раз проделаем наш опыт, но будем скатывать с наклонной плоскости другой шарик — большей массы. Брусок В передвинется дальше, т. е. будет совершена бóльшая работа. Значит, и кинетическая энергия второго шарика, больше, чем первого.

Чем больше масса тела и скорость, с которой он движется, тем больше его кинетическая энергия.

Для того чтобы определить кинетическую энергию тела, применяется формула:

Ек = mv^2 /2,

где m — масса тела, v — скорость движения тела.

Кинетическую энергию тел используют в технике. Удерживаемая плотиной вода обладает, как было уже сказано, большой потенциальной энергией. При падении с плотины вода движется и имеет такую же большую кинетическую энергию. Она приводит в движение турбину, соединенную с генератором электрического тока. За счет кинетической энергии воды вырабатывается электрическая энергия.

Энергия движущейся воды имеет большое значение в народном хозяйстве. Эту энергию используют с помощью мощных гидроэлектростанций.

Энергия падающей воды является экологически чистым источником энергии в отличие от энергии топлива.

Все тела в природе относительно условного нулевого значения обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе. Например, летящий самолет обладает относительно Земли и кинетической и потенциальной энергией.

Мы познакомились с двумя видами механической энергии. Иные виды энергии (электрическая, внутренняя и др.) будут рассмотрены в других разделах курса физики.

Превращение одного вида механической энергии в другой.

В природе, технике и быту можно часто наблюдать превращение одного вида механической энергии в другой: потенциальную в кинетическую и кинетическую в потенциальную. Например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.

Явление превращения одного вида механической энергии в другой очень удобно наблюдать на приборе, изображенном на рисунке. Накручивая на ось нить, поднимают диск прибора. Диск, поднятый вверх, обладает некоторой потенциальной энергией. Если его отпустить, то он, вращаясь, начнет падать. По мере падения потенциальная энергия диска уменьшается, но вместе с тем возрастает его кинетическая энергия. В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты. (Часть энергии расходуется на работу против силы трения, поэтому диск не достигает первоначальной высоты.) Поднявшись вверх, диск снова падает, а затем снова поднимается. В этом опыте при движении диска вниз его потенциальная энергия превращается в кинетическую, а при движении вверх кинетическая превращается в потенциальную.

Превращение энергии из одного вида в другой происходит также при ударе двух каких-нибудь упругих тел, например резинового мяча о пол или стального шарика о стальную плиту.

Если поднять над стальной плитой стальной шарик (рис) и выпустить его из рук, он будет падать. По мере падения шарика его потенциальная энергия убывает, а кинетическая растет, так как увеличивается скорость движения шарика. При ударе шарика о плиту произойдет сжатие как шарика, так и плиты. Кинетическая энергия, которой шарик обладал, превратится в потенциальную энергию сжатой плиты и сжатого шарика. Затем благодаря действию упругих сил плита и шарик, примут свою первоначальную форму. Шарик отскочит от плиты, а их потенциальная энергия вновь превратится в кинетическую энергию шарика: шарик отскочит вверх со скоростью, почти равной скорости, которой обладал в момент удара о плиту. При подъеме вверх скорость шарика, а значит, и его кинетическая энергия уменьшаются, потенциальная энергия увеличивается. отскочив от плиты, шарик поднимается почти до той же высоты, с которой начал падать. В верхней точке подъема вся его кинетическая энергия вновь превратится в потенциальную.

Явления природы обычно сопровождается превращением одного вида энергии в другой.

Энергия может и передаваться от одного тела к другому. Так, например, при стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.

Ссылки

  • Уроки по физике за 7 класс по школьной программе

Содержание:

  • Определение механической работы
  • Мощность

Характеристики движения, с точки зрения его способности накапливать, принимать и передавать энергию вводятся с помощью термина «механическая работа» или «работа силы». Если перефразировать, то работой можно назвать «меру воздействия силы». 

Определение механической работы 

Определение 1

Работа, выполняемая постоянной по величине силой F — это физический параметр, который можно вычислить как произведение силы на перемещение, умноженное на косинус угла. Угол определяется направлением, вдоль которого действует сила, и направлением перемещения объекта. 

Формула работы записывается в виде: 

A=F·s·cosα. 

Работа является скалярной величиной. Единица в системе СИ, которая используется для измерения работы — Джоуль. Джоуль равен работе, которая выполняется силой в 1 Ньютон, осуществляющей перемещение на расстояние 1 метр, вдоль направления действия силы. 

Если проецировать силу на ось, вдоль которой происходит перемещение, то она не останется постоянной величиной. Вычисление работы этом случае делают для малых перемещений $triangle s_{i}$, которые суммируются и определяются формулой: 

$A=sum triangle A_{i}=sum F_{si} triangle s_{i}$

Теперь вычислим работу при условии $triangle s_{i}rightarrow 0$, получаем, согласно определению интеграла, что наше выражение переходит в интеграл. При изображении работы на графике, в криволинейном варианте, получается суммирование бесконечно малых промежутков, а величина работы соответствует площади под линией на этом графике. Вычисления проводят так же как и для площади криволинейной фигуры.

$triangle A_{i}=F_{si}triangle s_{i}$

В качестве примера можно рассмотреть работу силы упругости пружины, которая вычисляется исходя из закон Гука. Чтобы осуществить растягивание пружины, надо приложить силу, модуль которой будет увеличиваться пропорционально увеличению длины пружины. Направление действия приложенной силы будет совпадать с направлением перемещения.

$F_{s} =kx$, 

где k — это жесткость пружин. 

В соотношении видна взаимосвязь модуля приложенной силы и координаты по оси х. Связь приложенного усилия и координаты на оси координат легко изобразить графически. Силу допустимо рисовать на графике прямой линией. Можно без труда обнаружить величину работы, производимую силой, приложенной к свободному концу пружины. Если брать график, то она вычисляется как площадь треугольника. Формула представлена в виде:

 $A=frac{kx^2}{2}$

Формула в такой интерпретации подходит для вычисления работы той силы, которая прикладывается к пружине и вызывает её сжатие. Случай сжатия и случай растяжения дают представление о том, что сила упругости соответствует работе, но противоположным знаком. 

Определение 2

Если на объект воздействует сразу несколько сил, то при вычислении их общей работы надо суммировать все части работы, которые будут совершаться этим объектом. Когда объект перемещается поступательным образом, то точки приложения усилий движутся равномерно и одинаково. А значит суммарная работа всех усилий будет приравнена общей работе, которая определена для равнодействующей силы. 

Мощность 

Определение 3

Мощность —это работа силы, выполняемая в единицу времени. 

Запись вычисления мощности, как физической величины обозначенной N, будет иметь вид отношения, в котором есть работа А и промежуток времени t. Получаем уравнение

 $N=frac{А}{t}$. 

Определение 4

В системе СИ за единицу мощности берётся ватт (Вт). Один Ватт — это такая мощность, которую совершит работа в 1 Дж за промежуток времени равный 1 с. 

Кроме системной единицы Ватт, используются и внесистемные единицы для измерения мощности. Например, для автомобилей часто применяется «лошадиная сила», которую можно приравнять к 745 Ваттам.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Содержание:

Мощность:

Одинаковую работу можно совершить за разные промежутки времени. Например, можно поднять груз за минуту, а можно поднимать этот же груз в течение часа.

Физическую величину, равную отношению совершенной работы Мощность в физике - виды, формулы и определение с примерами

Единицей мощности в SI является джоуль в секунду (Дж/с), или ватт (Вт), названный так в честь английского изобретателя Дж. Уатта. Один ватт — это такая мощность, при которой работу в 1 Дж совершают за 1 с. Итак, Мощность в физике - виды, формулы и определение с примерами

Человек может развивать мощность в сотни ватт. Чтобы оценить, насколько могущество человеческого разума, создавшего двигатели, больше «могущества» человеческих мускулов, приведем такие сравнения:

  • мощность легкового автомобиля примерно в тысячу раз больше средней мощности человека;
  • мощность авиалайнера примерно в тысячу раз больше мощности автомобиля;
  • мощность космического корабля примерно в тысячу раз больше мощности самолета.

Мощность

Механическая работа всегда связана с движением тел. А движение происходит во времени. Поэтому и выполнение работы, как и превращение механической энергии, всегда происходит на протяжении определенного времени.

Работа выполняемая на протяжении определенного времени:

Простейшие наблюдения показывают, что время выполнения работы может быть разным. Так, школьник может подняться по лестнице на пятый этаж за 1-2 мин, а пожилой человек — не меньше чем за 5 мин. Грузовой автомобиль КрАЗ может перевезти определенный груз на расстояние 50 км за 1 ч. Но если этот груз частями начнет перевозить легковой автомобиль с прицепом, то потратит на это не меньше 12 ч.

Для описания процесса выполнения работы, учитывая его скорость, используют физическую величину, которая называется мощностью.

Что такое мощность

Мощность — это физическая величина, которая показывает скорость выполнения работы и равна отношению работы ко времени, за которое эта работа выполняется.

Так как при выполнении работы происходит превращение энергии, то можно считать, что мощность характеризует скорость превращения энергии.

Как рассчитать мощность

Для расчета мощности нужно значение работы разделить на время, за которое эта работа была выполнена:

Мощность в физике - виды, формулы и определение с примерами

Если мощность обозначить латинской буквой Мощность в физике - виды, формулы и определение с примерами, то формула для расчета мощности будет такой

Мощность в физике - виды, формулы и определение с примерами

Единицы мощности

Для измерения мощности используется единица ватт (Вт). При мощности 1 Вт работа 1 Дж выполняется за 1 с:

Мощность в физике - виды, формулы и определение с примерами

Единица мощности названа в честь английского механика Джеймса Уатта, который внес значительный вклад в теорию и практику построения тепловых двигателей.

Мощность в физике - виды, формулы и определение с примерамиДжеймс Уатт (1736-1819) — английский физик и изобретатель. 

Главная заслуга Уатта в том, что он отделил водяной конденсатор от нагревателя и сконструировал насос для охлаждения конденсатора. Фактически он увеличил разность температур между нагревателем и конденсатором (холодильником), благодаря чему увеличил экономичность паровой машины. Позже теоретически это обоснует Сади Карно.

Он один из первых высказал предположение, что вода — это сложное вещество, состоящее из водорода и кислорода.

Как и для других физических величин, для единицы мощности существуют производные единицы:

Мощность в физике - виды, формулы и определение с примерами

Пример №1

Определить мощность подъемного крана, если работу 9 МДж он выполняет за 5 мин.

Дано:

Мощность в физике - виды, формулы и определение с примерами

Решение

По определению Мощность в физике - виды, формулы и определение с примерами поэтому

Мощность в физике - виды, формулы и определение с примерами

Ответ. Мощность крана 30 кВт.

Пример №2

Человек массой 60 кг поднимается на пятый этаж дома за 1 мин. Высота пяти этажей дома равна 16 м. Какую мощность развивает человек?

Дано:

Мощность в физике - виды, формулы и определение с примерами

Решение

По определению Мощность в физике - виды, формулы и определение с примерами

Работа определяется Мощность в физике - виды, формулы и определение с примерамиМощность в физике - виды, формулы и определение с примерами

Тогда Мощность в физике - виды, формулы и определение с примерами

Мощность в физике - виды, формулы и определение с примерами

Ответ. Человек развивает мощность 160 Вт.

Зная мощность и время, можно рассчитать работу:

Мощность в физике - виды, формулы и определение с примерами

Скорость движения зависит от мощности

Мощность связана со скоростью соотношением:

Мощность в физике - виды, формулы и определение с примерами

где Мощность в физике - виды, формулы и определение с примерами — сила, которая выполняет работу; Мощность в физике - виды, формулы и определение с примерами — скорость движения.

Если известны мощность двигателя и значения сил сопротивления, то можно рассчитать возможную скорость автомобиля или другой машины, которая выполняет работу:

Мощность в физике - виды, формулы и определение с примерами

Таким образом, из двух автомобилей при равных силах сопротивления большую скорость будет иметь тот, у которого мощность двигателя больше.

Каждый конструктор знает, что для увеличения скорости движения автомобиля, самолета или морского корабля нужно или увеличивать мощность двигателя, или уменьшать силы сопротивления. Поскольку увеличение мощности связано с увеличением потребления топлива, то средствам современного транспорта, как правило, придают специфическую обтекаемую форму, при которой сопротивление воздуха будет наименьшим, а все подвижные части изготавливают так, чтобы сила трения была минимальной.

Итоги:

  • Существуют два вида механической энергии: кинетическая и потенциальная.
  • Если тело перемещается или деформируется под действием силы, то выполняется механическая работа.
  • Простыми механизмами являются рычаги и блоки.
  • Ни один простой механизм не дает выигрыша в работе.
  • Качество механизма определяется коэффициентом полезного действия, который определяет часть полезной работы в общей выполненной работе.
  • Тело, при перемещении которого может быть выполнена работа, обладает энергией.
  • Взаимодействующие тела обладают потенциальной энергией.
  • Движущееся тело обладает кинетической энергией, которая зависит от скорости и массы тела.
  • Потенциальная и кинетическая энергии могут превращаться друг в друга. Такие превращения происходят в равной мере, если отсутствуют силы трения.
  • Сумму кинетической и потенциальной энергий называют полной механической энергией системы.
  • В замкнутой системе при отсутствии сил трения сумма кинетической и потенциальной энергий остается постоянной.
  • Закон сохранения и превращения энергии подтверждает невозможность существования вечного двигателя (perpetuum mobile).
  • Мощность характеризует скорость превращения одного вида энергии в другой.

Механическая работа и мощность

С помощью импульса невозможно описать все случаи взаимодействия. Поэтому в физике применяют еще и понятие механической работы.
В механике работа зависит от значения и направления силы, а также перемещения точки ее приложения. Из курса физики 8 класса вам известно, что

A = Fs,

где F — значение силы, действующей на тело; s — модуль перемещения тела.

Мощность в физике - виды, формулы и определение с примерами

Если сила F постоянна, а перемещение Мощность в физике - виды, формулы и определение с примерами прямолинейное (рис. 2.65), то работа Мощность в физике - виды, формулы и определение с примерами

где s = Мощность в физике - виды, формулы и определение с примерами — угол между направлением действия силы и перемещения.

Робота является величиной скалярной. Произведение Мощность в физике - виды, формулы и определение с примерами — проекция действующей силы на направление перемещения.

Легко заметить, что если Мощность в физике - виды, формулы и определение с примерами < 90°, то работа силы положительная, при Мощность в физике - виды, формулы и определение с примерами = 90° (сила перпендикулярна к перемещению) работа равна нулю, а при Мощность в физике - виды, формулы и определение с примерами — отрицательная.

Пример №3

Девочка тянет санки равномерно, прикладывая к веревке силу 50 Н. Веревка натягивается под углом 30° к горизонту (рис. 2.66). Какую работу выполнит девочка, переместив санки на 20 м?
Дано:

F = 50 Н,

s = 20 м, Мощность в физике - виды, формулы и определение с примерами = 30°.
А-?
 

Решение

По определению Мощность в физике - виды, формулы и определение с примерами

Соответственно Мощность в физике - виды, формулы и определение с примерами
Ответ: А = 870 Дж (работа силы положительная, поскольку cos 30° > 0).
Мощность в физике - виды, формулы и определение с примерами

  • Заказать решение задач по физике

Пример №4

Решим предыдущую задачу для случая, когда девочка удерживает санки, съехавшие с горки (рис. 2.67). В данном случае Мощность в физике - виды, формулы и определение с примерами = 150°.
Дано:

F = 50 Н, s = 20 м,

Мощность в физике - виды, формулы и определение с примерами = 150°.

А — ?
 

Решение

А = Fscosa;

А = 50 Н • 20 м • (-0,87) Мощность в физике - виды, формулы и определение с примерами -870 Дж.

Ответ: А = -870 Дж (работа силы отрицательная, поскольку cos 150° < 0).

Таким образом, в зависимости от направления действия силы по отношению к перемещению работа может иметь положительные и отрицательные значения.

Например, работа, которую выполняет двигатель автомобиля, будет положительной, поскольку направление силы тяги автомобиля совпадает с направлением его движения. Положительной будет и работа человека, поднимающего какой-либо груз с земли на определенную высоту. Силы трения, действующие на автомобиль, выполняют отрицательную работу, поскольку направлены в противоположном направлении к перемещению.

Возможны случаи, когда работа равна нулю, хотя перемещение тела происходит. Например, если Мощность в физике - виды, формулы и определение с примерами = 90°, то работа силы равна нулю, поскольку cos90° = 0. Сила тяжести, действующая на спутник Земли, который движется по круговой орбите, работы не выполняет.

Мощность — это физическая величина, характеризующая скорость совершения работы. Поскольку во время выполнения работы происходит превращение энергии, можно сделать вывод, что мощность показывает скорость превращения одного вида энергии в другой.

В механике мощность обозначают буквой N и рассчитывают по формуле

N= — =—,

t t

где Мощность в физике - виды, формулы и определение с примерами — изменение энергии; А — работа; t — время.

Если известны мощность и время, за которое совершена работа, то можно рассчитать и саму работу:
A = Nt.

Основная единица измерения мощности — ватт (Вт):
Мощность в физике - виды, формулы и определение с примерами

Всё о мощности

Одна и та же работа в разных случаях может быть выполнена за различные промежутки времени, т. е. она может совершаться неодинаково быстро. Например, при подъеме груза на определенную высоту подъемным краном (рис. 148) будет затрачено гораздо меньше времени, чем при использовании лебедки.

Для характеристики процесса выполнения работы важно знать не только ее численное значение, но и время, за которое она выполняется. Очевидно, что чем меньшее время требуется для выполнения данной работы, тем эффективнее работает машина, механизм и др.

Величина, характеризующая быстроту совершения работы, называется мощностью. Ее обычно обозначают буквой Р.

Если в течение промежутка времени Δt была совершена работа А, то средняя мощность равна отношению работы к этому промежутку времени:
Мощность в физике - виды, формулы и определение с примерами

Из определения видно, что мощность численно равна работе, совершаемой в единицу времени. Таким образом, единицей мощности является джоуль в секунду  Мощность в физике - виды, формулы и определение с примерами. Эта единица получила название ватт (Вт): 1 Вт = 1 Мощность в физике - виды, формулы и определение с примерами. Это название дано в честь английского ученого Джеймса Уатта — изобретателя универсального парового двигателя. Уаттом была впервые введена единица мощности, которая и до сих пор используется для характеристики мощности различных двигателей — 1 лошадиная сила (1 л. с. = 736 Вт).

Понятно, что во времена Уатта на заре технической революции мощность построенной паровой машины было естественно сравнить с мощностью лошади — единственным в то время «двигателем».

Может ли человек развивать мощность, равную 1 л. с.? Ответ на этот вопрос положительный. Рассмотрим разбег спортсмена на короткие дистанции. Хорошие спортсмены дистанцию в 100 м пробегают за 10 с, т. е. их средняя скорость 10 Мощность в физике - виды, формулы и определение с примерами. Разбег длится 3 с, а работа A, которую совершают мышцы спортсмена, не может быть меньше, чем кинетическая энергия Мощность в физике - виды, формулы и определение с примерами, приобретенная им за время разбега. Следовательно, средняя мощность не меньше, чем

Мощность в физике - виды, формулы и определение с примерами

Если предположить, что масса спортсмена т = 80 кг, то
Мощность в физике - виды, формулы и определение с примерами

Разумеется, развивать такую мощность длительное время не сможет даже очень тренированный человек.Если известна мощность, то работа выражается равенством:
A = P∆t.    (2)

Это позволяет ввести еще одну единицу работы (а значит, и энергии) следующим путем. За единицу работы можно принять работу, которая совершается некоторой силой в течение 1 с при мощности в 1 Вт. Она называется ватт-секундой. Понятно, что 1 Вт.c = 1 Дж. Часто используются более крупные внесистемные единицы работы и энергии: киловатт-час (кВт.ч) и мегаватт-час (МВт . ч):

1 кВт .ч= 1000кВт.3600 с = 3,6∙ 106 Дж;

1 МВт.ч= 1000кВт.3600 с = 3,6∙ 109 Дж.

При движении любого тела на него в общем случае действует несколько сил. Каждая сила совершает работу, и, следовательно, для каждой силы мы можем вычислить мощность.

Наиболее общее выражение для работы постоянной силы, направленной под углом Мощность в физике - виды, формулы и определение с примерами к направлению движения. А = F∆rcosМощность в физике - виды, формулы и определение с примерами. Поэтому средняя мощность этой силы:
Мощность в физике - виды, формулы и определение с примерами   (3)

так как Мощность в физике - виды, формулы и определение с примерами — модуль средней скорости тела.

Ясно, что если модуль силы в некоторой момент времени равен F и модуль мгновенной скорости υ, а угол между ними Мощность в физике - виды, формулы и определение с примерами, то мгновенное значение мощности этой силы:
P = FυcosМощность в физике - виды, формулы и определение с примерами.    (4)

Как следует из формулы (4), при заданной мощности мотора сила тяги тем меньше, чем больше скорость движения автомобиля. Вот почему водители при подъеме в гору, когда нужна наибольшая сила тяги, переключают двигатель на пониженную передачу. Для движения по горизонтальному участку с постоянной скоростью достаточно, чтобы сила тяги преодолевала силу сопротивления движению. Формула (4) позволяет объяснить, что быстроходные поезда, автомобили, корабли, самолеты нуждаются в двигателях большой мощности и конструкции, обеспечивающей как можно меньшую силу сопротивления.

Любой двигатель или механическое устройство предназначены для выполнения определенной механической работы. Эта работа называется полезной работой. Для двигателя автомобиля — это работа по его перемещению, для токарного станка — работа по вытачиванию детали и т. п.
В любой машине, в любом двигателе полезная работа всегда меньше той энергии, которая затрачивается для приведения их в действие, потому что всегда существуют силы трения, работа которых приводит к нагреванию каких-либо частей устройства. А нагревание нельзя считать полезным результатом действия машины.

Поэтому каждое устройство характеризуется особой величиной, которая показывает, насколько эффективно используется подводимая к нему энергия. Эта величина называется коэффициентом полезного действия (КПД) и обычно обозначается греческой буквой η (эта).

Коэффициентом полезного действия называется отношение полезной )аботы, совершенной машиной за некоторый промежуток времени, ко всей утраченной работе (подведенной энергии) за тот же промежуток времени:
Мощность в физике - виды, формулы и определение с примерами   (5)

Коэффициент полезного действия обычно выражается в процентах, поскольку и полезную, и затраченную работы можно представить как произведение мощности на промежуток времени, в течение которого работала машина, то коэффициент полезного действия можно определить следующим образом:
Мощность в физике - виды, формулы и определение с примерами
где Pn и Р3 — полезная мощность и затраченная мощность соответственно.

Главные выводы:

  1. Мощность численно равна работе, которую совершает сила в единицу времени.
  2. Мощность силы равна произведению силы на скорость тела и косинус угла между направлением силы и скорости в данный момент времени.
  3. Коэффициентом полезного действия называется отношение полезной работы, совершенной машиной за некоторый промежуток времени, ко всей затраченной работе (подведенной энергии) за тот же промежуток времени.
  • Взаимодействие тел
  • Механическая энергия и работа
  • Золотое правило механики
  • Потенциальная энергия
  • Криволинейное движение
  • Ускорение точки при ее движении по окружности
  • Инерциальные системы отсчета
  • Энергия в физике

Содержание

  • 1 Работы силы, формула
  • 2 Работа — разность кинетической энергии
  • 3 Работа силы тяжести — разность потенциальной энергии
  • 4 Мощность
    • 4.1 Еще одна формула для расчета мощности
  • 5 КПД
  • 6 Выводы

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Сила совершает работу по перемещению тела

Рис. 1. Сила перемещает тело и совершает работу

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

[ large boxed{ A = left( vec{F} , vec{S} right) }]

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]

( F left( H right) ) – сила, перемещающая тело;

( S left( text{м} right) ) – перемещение тела под действием силы;

( alpha ) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Машина увеличивает скорость, двигаясь по прямой горизонтально

Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

( E_{k1} left(text{Дж} right) )  – начальная кинетическая энергия машины;

( E_{k2} left(text{Дж} right) )  – конечная кинетическая энергия машины;

( m left( text{кг}right) ) – масса автомобиля;

( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

[ large E_{k} = m cdot frac{v^{2}}{2} ]

[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]

[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

[ large boxed{ A = Delta E_{k} }]

[ large Delta E_{k} = E_{k2} — E_{k1} ]

[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

[ large boxed{ A = Delta E }]

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Зная конечную высоту и начальную, на которой находилось тело, можно посчитать работу по вертикальному перемещению тела

Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

( E_{p1} left(text{Дж} right) )  – начальная потенциальная энергия яблока;

( E_{p2} left(text{Дж} right) )  – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

[ large E_{p} = m cdot g cdot  h]

( m left( text{кг}right) ) – масса яблока;

Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.

( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

[ large E_{p2} = 0,2 cdot 10 cdot  3 = 6 left(text{Дж} right) ]

Потенциальная энергия яблока на столе

[ large E_{p1} = 0,2 cdot 10 cdot  1 = 2 left(text{Дж} right) ]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

[ large Delta E_{p} = E_{p2} — E_{p1} ]

[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед ( Delta  E_{p}) дополнительно допишем знак «минус».

[ large boxed{ A = — Delta E_{p} }]

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Работа силы тяжести зависит только от разности высот между начальным и конечным положением тела, поэтому, для всех траекторий на рисунке работа по перемещению будет одинаковой

Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

[ large A = Delta E_{k} ]

[ large A = Delta E_{p} ]

[ large A = F cdot S cdot cos(alpha) ]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

[ large boxed{ P = frac{A}{Delta t} }]

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

[ large P = left( vec{F} , vec{v} right) ]

Формулу можно записать в скалярном виде:

[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]

( F left( H right) ) – сила, перемещающая тело;

( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;

( alpha ) – угол между вектором силы и вектором скорости тела;

Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:

[ large boxed{ P = F cdot v }]

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД

КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.

[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]

(eta) – КПД;

( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;

(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

[ large boxed{ eta leq 1 }]

Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]

Выводы

  1. Сила, приложенная к телу и перемещающая его, совершает работу;
  2. Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
  3. Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
  4. Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
  5. Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
  6. Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
  7. Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
  8. Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
  9. Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
  10. КПД — это либо правильная дробь, или дробь, равная единице.
  11. Можно вычислять КПД, подставляя в формулу работу, или мощности

Понравилась статья? Поделить с друзьями:

Другие крутые статьи на нашем сайте:

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest

0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии